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Abstract
We study multi-component SIT–NLS systems associated with Hermitian
symmetric spaces. We introduce generalized polarizations and express them in
terms of the variable of Hermitian symmetric spaces. The equations of motion
are expressed using electromagnetic fields and generalized polarizations. The
Bäcklund transformation of the SIT–NLS system is introduced, which relates
two solutions of SIT–NLS systems.

PACS numbers: 42.65.Tg, 05.45.Yv

1. Introduction

The phenomenon of self-induced transparency (SIT) is due to the fact that optical solitons occur
as a result of coherent interaction of the optical pulse with the resonant atoms like erbium. On
the other hand, the nonlinear Schrödinger (NLS) equation describes the lossless propagation
of optical solitons along a fibre when the dispersion gets balanced by the nonlinearity of
the medium. The possibility of coexistence of SIT–NLS solitons was first reported in [1],
while its detailed physical mechanism was analysed by Nakazawa et al [2]. They note that
SIT offers the possibility of pulse shaping and standardization that is different from the NLS
soliton formation. Since then the SIT–NLS system has been thoroughly analysed, including
the integrability properties like Painlevé analysis [3], Lax pair, soliton solutions [4], and their
inhomogeneous generalization, etc [5]. In these studies, the SIT–NLS soliton system describes
the propagation of optical solitons in an optical fibre doped with two-level resonant atoms.
These kinds of fibres can be used, for example, for the all-optical communication system by
manipulating the effect of SIT.

The extension of the SIT–NLS system to the case of multi-level resonant atoms is
interesting. It can be used to describe important phenomena related with the SIT effect
of multi-level resonant atoms like soliton cloning [6]. In fact, [7] describes a three-level
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SIT–NLS system, used to study soliton clone generation. The equation used for this system
was

∂A12

∂x
= − i

2
β22

∂2A12

∂τ 2
+ iγ12[|A12|2 + 2|A13|2]A12 +

iω12na

2ε0c
c∗

2c1µ12,

∂A13

∂x
= − i

2
β23

∂2A13

∂τ 2
+ iγ13[|A13|2 + 2|A12|2]A13 +

iω13na

2ε0c
c∗

3c1µ12,

∂c1

∂t
= i

h̄
[c2µ12A12(t) + c3µ13A13(t)],

∂c2

∂t
= i

h̄
[c1µ12A

∗
12(t)],

∂c3

∂t
= i

h̄
[c1µ13A

∗
13(t)],

(1)

where Aij are the optical pulses tunes in a frequency ωij , while ci denote the probability
amplitude of the atomic level i, and τ = (t − x/vg)/T0 with T0 as the pulse width and vg as
the average group velocity. For other notation, see [7]. Equation (1) describes the coherent
interaction of optical solitons with three-level atoms, where c1 is the probability amplitude of
the ground state, while c2, c3 are those of the excited states. This equation becomes integrable
for special values of the parameters µi, βi, γi and for special forms of triple interaction terms
like |Ai |2Aj .

The integrability property of a nonlinear equation is important in studying the physical
properties of the system. They admit the use of the inverse scattering method, permitting
analytical solutions including multi-soliton solutions. Considering the applicability of the
SIT–NLS solitons, it is desired to have integrable SIT–NLS equations of multi-level resonant
atoms. One possible scheme in this direction is to use multi-level generalizations based
on Hermitian symmetric spaces (HSS). It is well known that the Hermitian symmetric spaces
admit multi-level generalizations of various nonlinear equations [8] including the NLS equation
[9, 10], the derivative NLS equation [11], the KdV and mKdV equations [12]. Even though not
explicit, the Hermitian symmetric space also appeared in describing multi-level SIT systems
[13].

In this paper, we construct multi-level SIT–NLS systems based on the Hermitian
symmetric spaces. In this formalism, the group elements g of the HSS are related to the
probability amplitudes of atomic levels, while components of g−1∂g correspond to the optical
pulses Aij . In the case of the two-level SIT–NLS system, the probability amplitudes ci are
rewritten in the form of D = |c2|2 − |c1|2 and P = c1c

∗
2 by using the population inversion

variable D and the polarization P. This makes it possible to understand intuitively the way
in which the phase rotation of the dipole changes. In the case of the multi-level SIT–NLS
system, a similar formulation is possible using generalized variables for polarizations and
population inversions, which are named generalized polarizations. They are related with the
group elements of the HSS by g−1T̄ g. These variables are related to the density matrix; see
more details and their physical meanings in [14] for the SIT case.

The Lax pair of multi-level SIT–NLS systems are constructed in terms of the group
elements g, and the equation of motion for g is obtained by requiring the compatibility of the
Lax pairs. We then discuss the Bäcklund transformation (BT) in two forms [15, 16]. The
BT is important as it gives multi-soliton solutions, avoiding the mathematical technicalities
of the inverse scattering method. It is also related with the problem of integrable boundary
conditions [17, 18].

Section 2 introduces Hermitian symmetric spaces. Some specific features of the HSS are
explained, which are essential for the construction of the multi-level SIT–NLS system. Explicit
examples of the HSS are given in section 3. Their equations of motion are expressed in terms
of the optical pulses g−1∂g and generalized polarizations g−1T̄ g. BTs in two forms, type-I
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BT and type-II BT, are explained in section 4. The relation between the BT and equations
of motion is also explained in section 4. These BTs will be used in a separate paper [19] in
constructing explicit one- and two-soliton solutions of SIT–NLS systems associated with the
HSSs. The appendix proves equation (31) in section 4.

2. The SIT–NLS system in Hermitian symmetric spaces

2.1. The Hermitian symmetric space

The complex structure of the Hermitian symmetric space G/K [20] is essential in constructing
the multi-component SIT–NLS system. Let g and k be the associated Lie algebras for G/K

whose orthogonal decomposition, g = k ⊕ m, satisfies the commutation relations,

[k, k] ⊂ k, [k, m] ⊂ m, [m, m] ⊂ k. (2)

The Hermiticity of G/K implies that there exists an element T in the Cartan subalgebra of
k whose adjoint action defines a complex structure such that [T , [T ,m]] = −m for m ∈ m.
The subalgebra k is characterized by the property that it commutes with T, i.e. [T , k] = 0 for
k ∈ k.

The complete classification of Hermitian symmetric spaces is known [20] in terms of four
series and two exceptional cases; AIII = SU(m + n)/(SU(m) × SU(n) × U(1)), CI =
Sp(n)/U(n), DIII = SO(2n)/U(n), BDI = SO(m + 2)/(SO(m) × SO(2)), EIII =
E6/(SO(10) × SO(2)), EVII = E7/(E6 × SO(2)). In this paper, we treat the following
cases of SIT–NLS systems; (1) AIII, (2) CI with n = 2, i.e., Sp(2)/U(2), (3) DIII with
n = 4, i.e. SO(8)/U(4).

2.2. The Lax pair

The Lax pair of the SIT–NLS equation is given by

0 = Lz� ≡ [∂ + E + λT ]�,

0 = Lz̄� ≡
[
∂̄ +

1

2
[E, Ẽ] − ∂Ẽ − λE − λ2T − 1

λ
g−1T̄ g

]
�.

(3)

Here ∂ ≡ ∂/∂τ, ∂̄ ≡ ∂/∂x, T̄ = −αT with a constant α, E ≡ g−1∂g ∈ m and
Ẽ ≡ [T ,E] ∈ m. E denotes the optical pulses which corresponds to Aij in equation (1),
while g−1T̄ g describes the generalized polarization. At the present stage, g is the independent
variable of the theory.

We now study the compatibility condition of over-determined linear equations; [Lz,Lz̄] =
0, which should hold for all values of λ. The compatibility conditions at O(λ3) and O(λ2) are
trivial, while at O(λ1) it becomes

−∂E + 1
2 [T , [E, [T ,E]]] − [T , [T , ∂E]] = 0. (4)

Here, we note that [T , [T , ∂E]] = −∂E as ∂E ∈ m and [T , [E, [T ,E]]] = 0 as [T , k] = 0 for
k ∈ k, which prove equation (4). At O(λ0), the compatibility condition becomes the equation
of motion of the SIT–NLS system,

∂̄E = −∂2Ẽ + 1
2 [E, [E, Ẽ]] − [T , g−1T̄ g]. (5)

At O(λ−1), the compatibility condition becomes an identity1

∂(g−1T̄ g) + [E, g−1T̄ g] = 0. (6)

We note that the property E ≡ g−1∂g ∈ m is essential for the compatibility of the
overdetermined Lax pair, leading to the integrable SIT–NLS equation.
1 ∂g−1 = −g−1∂gg−1.
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3. Equation of motion

Equation (5) is an equation for the variable g ∈ G, where E is related to g as E = g−1∂g.
It can be casted in a more familiar form found in equation (1) by taking g and E as two
independent variables. In this formalism, the SIT–NLS equations are constituted by two
equations, equation (5) and an auxiliary equation

∂g = gE. (7)

Then, equation (5) corresponds to the first two equation of (1), while equation (7) corresponds
to the last two equation of (1).

For AIII, CI and DIII series, (m + n) × (m + n) matrices E ∈ m and T can be rewritten
in block forms,

E =
(

0 Em

−E
†
m 0

)
, T = i

2

(
In 0
0 −Im

)
(8)

where † denotes a Hermitian conjugate and In is an ×n identity matrix. The matrix Em is a
complex n × m matrix for AIII, a complex symmetric n × n matrix (m = n) for CI , and a
complex anti-symmetric n × n matrix (m = n) for DIII.

3.1. Equation of SU(m+n)

SU(m)×SU(n)×U(1)
HSS

This model corresponds to taking G = SU(m + n),K = SU(m) × SU(n) × U(1), and E and
T matrices are given by (m + n) × (m + n) matrices in equation (8) with

Em =

ψ1,1 ψ1,2 · · · ψ1,m

· · ·
ψn,1 ψn,2 · · · ψn,m


 . (9)

In fact, the tracelessness of T requires a term i m−n
2(m+n)

I in equation (8), but this does not
introduce any difference in the following. Then equation (5) becomes

∂̄ψi,j = −i∂2ψi,j − 2i
∑

l=1,n,k=1,m

ψ∗
l,kψl,jψi,k − α

∑
l=1,n

g∗
l,igl,n+j , i = 1, n, j = 1,m. (10)

The auxiliary equation (7) becomes

∂gi,j = −
∑

l=1,m

gi,n+lψ
∗
j,l , i = 1, n, j = 1, n

∂gi,n+j =
∑
l=1,n

gi,lψl,j , i = 1, n, j = 1,m.
(11)

We note that equations (10), (11) reduce to equation (1) by taking n = 1,m = 2 and
substituting A12 → iψ1,1, A13 → iψ1,2, c1 → g∗

1,1, c2 → g∗
1,2, c3 → g∗

1,3.2

The generalized polarizations are given by

g−1T̄ g ≡ −
(

D(n) + i
2αIn P

−P † D(m) − i
2αIm

)
. (12)

Here, the matrix elements of D(n),D(m) are given by

D
(n)
i,j = iα

∑
l=1,n

g∗
l,igl,j − iαδi,j , D

(m)
i,j = iα

∑
l=1,n

g∗
l,n+igl,n+j , (13)

2 The ration between triple coupling terms of Aij in equation (1) is 1:2, while this reduction gives a ratio of 1:1. It is
known that this 1:1 ratio coupling describes the pulse propagation in a randomly birefringent fibre or in an elliptically
birefringent fibre. The different form of triple coupling terms can be obtained by choosing different HSSs, which is
the motivation of the present work.
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Figure 1. Multi-level resonant systems and their associated Hermitian symmetric spaces.

with the property D(n)† = −D(n) and D(m)† = −D(m). P is an n × m complex matrix with

Pi,j = iα
∑
l=1,n

g∗
l,igl,n+j . (14)

Note that the last term of equation (10) is the generalized polarization, iPi,j . Equation (11)
can be rewritten in terms of the generalized polarizations. For this, we can use equation (6) to
obtain

∂D
(n)
i,j =

∑
l=1,m

(P ∗
j,lψi,l − Pi,lψ

∗
j,l), i, j = 1, n,

∂D
(m)
i,j =

∑
l=1,n

(−P ∗
l,iψl,j + Pl,jψ

∗
l,i ), i, j = 1,m,

∂Pi,j = −
∑

l=1,m

D
(m)
l,j ψi,l +

∑
l=1,n

D
(n)
i,l ψl,j , i = 1, n, j = 1,m.

(15)

Some level structures of resonant atoms in the AIII series were known as the W or the M
system, described by SU(5)/(SU(2) × SU(3) × U(1)). There are structures known as � or
V system, which are described by SU(3)/(SU(2) × U(1)). In figure 1, we show some level
structures of resonant atoms and their corresponding HSSs which have been studied in the
literature, see [13, 14].

3.2. Equation of Sp(2)

U(2)
HSS

This model corresponds to taking G = Sp(2),K = U(2), and E and T matrices are given by
4 × 4 matrices in equation (8) with n = m = 2, and

Em =
(

ψ1 ψ2

ψ2 ψ3

)
. (16)

Then, equation (5) becomes,

∂̄ψ1 = −i∂2ψ1 − 2i(|ψ1|2 + 2|ψ2|2)ψ1 − 2iψ2
2 ψ∗

3 − α(g∗
1,1g1,3 + g∗

2,1g2,3),

∂̄ψ2 = −i∂2ψ2 − 2i(|ψ1|2 + |ψ2|2 + |ψ3|2)ψ2 − 2iψ1ψ
∗
2 ψ3 − α(g∗

1,1g1,4 + g∗
2,1g2,4), (17)

∂̄ψ3 = −i∂2ψ3 − 2i(2|ψ2|2 + |ψ3|2)ψ3 − 2iψ∗
1 ψ2

2 − α(g∗
1,2g1,4 + g∗

2,2g2,4).
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In deriving equation (17), we use the property
∑

l=1,4 g∗
l,igl,j = δi,j . The auxiliary equation (7)

becomes
∂gi,1 = −gi,3ψ

∗
1 − gi,4ψ

∗
2 , ∂gi,2 = −gi,3ψ

∗
2 − gi,4ψ

∗
3 ,

∂gi,3 = gi,1ψ1 + gi,2ψ2, ∂gi,4 = gi,1ψ2 + gi,2ψ3, i = 1, 2.
(18)

The generalized polarizations are defined by

g−1T̄ g ≡ −




iD1 Q P1 P2

−Q∗ iD2 P2 P3

−P ∗
1 −P ∗

2 −iD1 Q∗

−P ∗
2 −P ∗

3 −Q −iD2


 , (19)

where Di, Pi are similarly defined as in equations (13), (14) such that P1 = iα(g∗
1,1g1,3 +

g∗
2,1g2,3), etc. The matrix form in equation (19) was introduced in [20], where it was argued

that g should be skew-symmetric invariant as well as complex unitary. Equation (18) can be
rewritten in terms of the generalized polarizations as,

∂D1 = i(P1ψ
∗
1 − P ∗

1 ψ1 + P2ψ
∗
2 − P ∗

2 ψ2), ∂Q = P ∗
2 ψ1 − P2ψ

∗
3 + P ∗

3 ψ2 − P1ψ
∗
2 ,

∂P1 = 2iD∗
1ψ1 + 2Qψ2, ∂P2 = i(D1 + D2)ψ2 + Qψ3 − Q∗ψ1.

(20)

and similarly for D2 with replacements P1 → P3, ψ1 → ψ3 in the first equation of (20), and
for P3 with replacements D1 → D2, ψ1 → ψ3,Q → −Q∗ in the third equation of (20).
It can be explicitly checked that ∂

(
D2

1 + D2
2 + 2|Q|2 + |P1|2 + 2|P2|2 + |P3|2

) = 0 by using
equation (20), which results from Tr(g−1T̄ g)2 = −α2.

3.3. Equation of SO(8)

U(4)
HSS

This model corresponds to taking G = SO(8),K = U(4), and E and T matrices are given by
8 × 8 matrices in equation (8) with n = m = 4, and

Em =




0 ψ1 ψ3 ψ6

−ψ1 0 ψ2 ψ5

−ψ3 −ψ2 0 ψ4

−ψ6 −ψ5 −ψ4 0


 . (21)

Then equation (5) becomes

∂̄ψ1 = −i∂2ψ1 − 2i
∑
i �=4

|ψi |2ψ1 − 2i(−ψ2ψ6 + ψ5ψ3)ψ
∗
4 + iP1,

∂̄ψ3 = −i∂2ψ3 − 2i
∑
i �=5

|ψi |2ψ3 − 2i(ψ1ψ4 + ψ2ψ6)ψ
∗
5 + iP3,

(22)

where Pi are one of the generalized potentials defined by3

g−1T̄ g ≡ −
(

D P

P ∗ D∗

)
, (24)

D =




iD1 Q1 Q3 Q6

−Q∗
1 iD2 Q2 Q5

−Q∗
3 −Q∗

2 iD3 Q4

−Q∗
6 −Q∗

5 −Q∗
4 iD4


 , P =




0 P1 P3 P6

−P1 0 P2 P5

−P3 −P2 0 P4

−P6 −P5 −P4 0


 . (25)

3 The matrix form in equation (24) was determined in [20] by requiring that g ∈ U(8) as well as satisfying

gT

(
0 I4

I4 0

)
g =

(
0 I4

I4 0

)
. (23)
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The explicit form of Di,Qi, Pi in terms of gi,j can be given similarly as in equations (13),
(14). The auxiliary equation (6) in terms of the generalized potentials is

∂P1 = i(D1 + D2)ψ1 + Q2ψ3 + Q5ψ6 − Q3ψ2 − Q6ψ5,

∂P3 = i(D1 + D3)ψ3 + Q4ψ6 − Q∗
2ψ1 + Q1ψ2 − Q6ψ4,

∂D1 = −2 Im(P1ψ
∗
1 + P3ψ

∗
3 + P6ψ

∗
6 ),

∂Q1 = P ∗
2 ψ3 + P ∗

5 ψ6 − P3ψ
∗
2 − P6ψ

∗
5 ,

∂Q3 = −P ∗
2 ψ1 + P ∗

4 ψ6 + P1ψ
∗
2 − P6ψ

∗
4 .

(26)

Equations for other components can be obtained by applying the following substitutions
on equation (26), (ψ1, P1,Q1,D1) → (ψ2, P2,Q2,D2) → (ψ4, P4,Q4,D3) →
(−ψ6,−P6,−Q∗

6,D4) → (ψ1, P1,Q1,D1) and (ψ3, P3,Q3) → (ψ5, P5,Q5) →
(−ψ3,−P3,−Q∗

3) → (−ψ5,−P5,−Q∗
5) → (ψ3, P3,Q3).

4. The Bäcklund transformation

4.1. Type-I BT

Let � be the solution of the pair of the Lax equation (3) for a given g ∈ G. Here g is a solution
of the SIT–NLS equation (5). We introduce a new solution �̂ in a form

�̂ = (λ − σ)�, σ = f −1Mg, (27)

where M is an arbitrary constant matrix. Here f ∈ G is another new solution of the SIT–NLS
equation (5). This relation (27) between �, �̂ expressed by the two solutions f, g of the
SIT–NLS equation is the Type-I BT [16]. This form is useful in deriving the permutability
theorem, which then will be used in constructing two-soliton solutions [19].

4.2. Type-II BT

From the type-I BT, we can derive the BT (type-II BT) in a more familiar form. �̂ in
equation (27) satisfies

0 = [∂ + F + λT ]�̂ = [∂ + F + λT ](λ − σ)�,

= [−∂σ − (λ − σ)(E + λT ) + (F + λT )(λ − σ)]� (28)

where F = f −1∂f . O(λ0) of equation (28) gives −∂σ + σE − Fσ = 0, which are satisfied
as σ = f −1Mg. O(λ1) of equation (28) gives

0 = F − E − [T , σ ] = f −1∂f − g−1∂g − [T , f −1Mg], (29)

which becomes the first equation of the type-II BT.
Similarly, ∂̄-part of the Lax equation (3) gives

0 =
[
−∂̄σ + (λ − σ)

(
−1

2
[E, Ẽ] + ∂Ẽ + λE + λ2T +

1

λ
g−1T̄ g

)

×
(

1

2
[F, F̃ ] − ∂F̃ − λF − λ2T − 1

λ
f −1T̄ f

)
(λ − σ)

]
�. (30)

O(λ−1) of equation (30) gives −σg−1T̄ g + f −1T̄ f σ = 0, which are satisfied by choosing
σ = f −1Mg with [T̄ ,M] = 0. O(λ0) of equation (30) gives(
f −1∂̄f + ∂F̃ − 1

2 [F, F̃ ]
)
σ − f −1T̄ f = σ

(
g−1∂̄g + ∂Ẽ − 1

2 [E, Ẽ]
) − g−1T̄ g, (31)

which is the second equation of the type-II BT. O(λ1) of equation (30) gives
1
2 [F, F̃ ] − ∂F̃ + Fσ = 1

2 [E, Ẽ] − ∂Ẽ + σE, (32)
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which can be shown to be resulted from the first equation (29) of the type-II BT, see the
appendix. O(λ2) of equation (30) gives once again the first equation (29) of the type-II BT.

Equations (29) and (31) give relations between f and g, and can be used to obtain a new
solution f from a known solution g.

4.3. The equation of motion from the BT

The BT gives a method to obtain a new solution f from a known solution g. The consistency
of the BT with the equation of motion means that once g is the solution of the equation of
motion, then the new solution f should be the solution of the equation of motion, too. Here we
give a proof of this statement. It shows typically how the property of the Hermitian symmetric
space is involved in manipulating this type of equation.

We first introduce two identities, which are useful for our purpose. Let us start with

[T , ∂̄σ ] = [T ,−f −1∂̄ff −1Mg + f −1M∂̄g]. (33)

By applying the BT (31) on the right-hand side of equation (33), we obtain[
T , ∂F̃ σ − 1

2 [F, F̃ ]σ − f −1T̄ f − σ∂Ẽ + 1
2σ [E, Ẽ] + g−1T̄ g

]
. (34)

Using the properties of the HSS and applying the BT (29) on equation (34), we obtain

[T , ∂̄σ ] = −∂Fσ + ∂F̃ (F − E) − 1
2 [F, F̃ ](F − E) − [T , f −1T̄ f ]

− (F − E)∂Ẽ + σ∂E + 1
2 (F − E)[E, Ẽ] + [T , g−1T̄ g]. (35)

Finally applying equation (32) on equation (35) (and using the properties of HSS) gives

[T , ∂̄σ ] = −∂Fσ + [F̃ , ∂F ] + 1
2 [F, [F, F̃ ]] − 1

2 [E, [E, Ẽ]] + 1
2∂[E, Ẽ] − 2FσE

+ σE2 + F 2σ + σ∂E + [T , g−1T̄ g − f −1T̄ f ]. (36)

Equation (36) is the first identity.
The second identity is obtained by differentiating (∂) equation (32),

1
2∂[F, F̃ ] − ∂2F̃ + ∂Fσ − F 2σ + 2FσE − 1

2∂[E, Ẽ] + ∂2Ẽ − σE2 − σ∂E = 0, (37)

where we use the identity ∂σ = −Fσ + σE.
Finally, differentiating (∂̄) the BT (29) and using two identities in (36) and (37), we get

∂̄F − ∂̄E − 1
2 [F, [F, F̃ ]] + 1

2 [E, [E, Ẽ]] + ∂2F̃ − ∂2Ẽ − [T , g−1T̄ g − f −1T̄ f ] = 0, (38)

which proves our statement.

5. Discussion

In this paper, we have constructed multi-component SIT–NLS systems associated with the
Hermitian symmetric spaces. These systems can describe matched pulses propagating
through a Kerr medium doped with multi-level resonant atoms. The Hermitian symmetric
spaces describe the SIT–NLS system naturally, where g−1T̄ g corresponds to the generalized
population, while g−1∂g describes the pulse propagation. The Lax pair is constructed in terms
of these variables and the equation of motion is explicitly written for some specific HSSs. We
introduce the BT of these systems, and show that they are compatible with the equation of
motion. The complex structure of the HSS is found to be essential in manipulating all these
relations.

The BT gives a natural way to find solitons of the multi-component SIT–NLS systems.
Explicit construction of solitons using the BT will be given in a separate paper [19]. This type
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of construction is rare for multi-component integrable systems and should serve as a proper
guidance to studies of more realistic systems.

Finally, we want to mention that our formalism can be easily extended to describe the
SIT-higher derivative NLS system, where propagating pulses are very short or highly intensive
[21]. An appropriate extension of the higher derivative NLS systems on Hermitian symmetric
spaces in [11] should be conducted for this purpose.
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Appendix. Proof of equation (32)

We first prove the m-part of (32), which is

0 = ∂F̃ − ∂Ẽ − (Fσ − σE)m. (A.1)

Here, (Fσ −σE)m and (Fσ −σE)k mean the m-part and the k-part of (Fσ −σE), respectively.
Using

−(Fσ − σE)m = −(f −1∂ff −1Mg − f −1M∂g)m = ∂(f −1Mg)m = ∂σm, (A.2)

the m-part of (32) can be written as

0 = ∂F̃ − ∂Ẽ + ∂σm. (A.3)

From the BT (29), we get

0 = F̃ − Ẽ − [T , [T , σ ]] = F̃ − Ẽ + σm. (A.4)

Now, we differentiate (∂) equation (A.4) to obtain equation (A.3).
The k-part of (32) is

0 = 1
2 [F, F̃ ] − 1

2 [E, Ẽ] + (Fσ − σE)k. (A.5)

Using the BT (29), equation (A.5) becomes

0 = 1
2 [E + [T , σ ], Ẽ − σm] − 1

2 [E, Ẽ] + (Eσ + [T , σ ]σ − σE)k

= −[E, σm] + [E, σ ]k − 1
2 [[T , σ ], σm] + ([T , σ ]σ)k. (A.6)

Now, by noting

− 1
2 [[T , σ ], σm] + ([T , σ ]σ)k = 1

2 [T , σ 2]k = 0, (A.7)

equation (A.5) is proved.
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